

Dense Breast Mass Detection by QT imaging

Background

Almost all the clinical trials involving QT imaging have accrued only patients with a "positive mammogram". This limits the results to "non-inferiority" interpretations. In order to determine if QT has advantages over X-ray mammography the "positive" QT findings need to be compared to the X-ray mammographic findings. This is a pilot analysis of such a comparison.

Methods

Forty QT findings from dense breasts (over 40% quantitative breast density)¹ were selected from a 250-woman case collection study at an academic medical center that was designed to compare X-ray mammography to QT. Patients with dense breasts from the dataset were selected that had findings of a mass on their QT scan. The mammograms of these same cases were read by boardcertified breast radiologists, and these interpretative reports were used a basis for the mammographic findings. Co-location of any positive mammographic and QT findings were also confirmed. Two cases were excluded from analysis because they only had handheld ultrasound examination. Five cases had mammography findings co-located with the QT findings, and the remaining 34 cases were referred to as "Dense Breast Cases with Positive QT and a Negative XRM."

Results

Following is a chart, Table 1, of 38 masses found on the QTscan in cases with dense breasts which are hard to see on screening XRM.

Q7imaging⁻

TABLE 1

PATIENT					TRUE POS	FALSE NEG
טו		SIDE	QI FINDING	RADIOLOGIST REPORT	XRIVI	XRIVI
1	0021	IEET				1
2	0021	RIGHT				1
2	0001	IEET				1
1	008L	RIGHT			1	1
- 4 С	016				1	
5	010L 035R	RIGHT			1	1
7	0521	IFET				1
2 2	055R	RIGHT				1
0 Q	0598	RIGHT				1
10	0601	IFET				1
11	0601					1
12	OSOL	RIGHT				1
12	0000					1
14	0010					1
14	091N					1
15	0910					1
17	106R	RIGHT				1
10	1061	IEET		Asymmetries no mass soon		1
10	TOOL	LLFI		Asymmetries no mass seen		1
10	100R	RIGHT		Masses		1
20	100R		729 CVST 80C COP D75			1
20	1091	IEET		Prd massas III broast	1	1
21	109L			Smooth aval mass LIOO	1	
22	1221			BiRada 2 yagua contral shadow	1	1
25	123L					1
24	1431	MGIII	510101 101A55 100C CON F04			1
25	1/15R	RIGHT		oval solid mass		1
25	155R	RIGHT	3X9MM DUCTAL MASS 120C COR P65	MASS OLIO not the OT finding		1
20	157R	RIGHT				1
27	1571	LEET				1
20	1591	LEFT				1
25	IJJL			Distortion LIOO not in area of OT		
30	1621	LEET	MASS 10C COR P40	finding		1
50	1021					
31	167L	LEFT	COR P57	ONLY HHUS REPORT		
32	1681	LEFT	7MM CYST 12OC COR P54	UNREMARKABLE		1
33	175L	LEFT	15MMM CYST 2OC COR P53	MASS UOO	1	_
34	177L	LEFT	MASSIUQ	UNREMARKABLE		1
35	178L	LEFT	33MM HIGHLY SUSPICIOUS MASS	UNREMARKABLE		1
36	188	LEFT	8MM CYST 100C COR P40	UNREMARKABLE		1
37	188R	RIGHT	12MM CYST 10C COR P40	Mass UOO previewst on HHUS	1	_
38	195L	LEFT	8X10MM CYST 230 OC COR P85	Asymmetry UOO no mass seen		1
39	1971	LEFT	SUSPICIOUS RETROAREOLAR MASS	UNREMARKABLE		1
	1372			Breast lump 12OC only Asymmetry		
40	220R	RIGHT	30MM SUSPICIOUS MASS 12OC COR P48	on XRM		1
					1	
TOTALS					6	32
USABI F					1	1
CASES		38				

Statistics

There were 38 usable cases and approximately 40 masses (2excluded because of no XRM – only HHUS). Using a denominator of 38, XRM was able to visualize 6 of the 36 abnormalities (16%) and XRM was not able to define 32 abnormalities (84%) – Table 2.

TOTAL USABLE FINDINGS	38	
	NUMBER	PERCENT
TRUE POS XRM CASES	6	15.79%
FALSE POS XRM CASES	0	0.00%
FALSE NEG XRM CASES	32	84.21%
TRUE NEG XRM CASES	0	0.00%
EXCLUDED HHUS ONLY	2	

TABLE 2 – STATISTICS OF XRM AND QT SCAN READS

Discussion

QT is better at seeing certain types of masses in dense breasts than mammography. This corresponds to several studies that have been published^{2,3}. QT breast imaging can see into dense breasts with more clarity and is more *sensitive* at detecting certain masses than mammography. QT breast imaging is also more *specific* than x-ray mammography at identifying certain types of masses (cyst vs solid) within breasts⁴.

¹Natesan R, Wiskin JW, Lee S, Malik B. *Quantitative assessment of breast density: transmission ultrasound is comparable to mammography with tomosynthesis*. Cancer Prevention Research October 23, 2019. Doi: 10.1158/1940-6207.CAPR-19-068 <u>https://cancerpreventionresearch.aacrjournals.org/content/early/2019/10/23/1940-6207.CAPR-19-0268</u>

²John C Klock, Elaine Iuanow, Kathleen Smith, Nancy A and Obuchowski *Visual Grading Assessment of Quantitative Transmission Ultrasound Compared to Digital X-ray Mammography and Hand-held Ultrasound in Identifying Ten Breast Anatomical Structures*. BAOJ Clinical Trials 3: 015. (2017). https://bioaccent.org/clinical-trials/clinical-trials15.pdf

³Klock JC, Lenox MW, Wiskin JW, Malik B, Natesan R. *Transmission Ultrasound Using 3D Inverse Scattering. Open Access E Book on Emerging Trends in Ultrasound*. June 2018 <u>http://openaccessebooks.com/emerging-trends-ultrasound-imaging/transmission-ultrasound-imaging-using-3D-inverse-scattering.pdf;</u> ISBN: 978-93-87500-37-2

⁴Elaine Iuanow, MD, Kathleen Smith, MBA, Nancy A. Obuchowski PhD⁺, Jennifer Bullen MS⁺ and John C. Klock, MD. *Accuracy of Cyst vs. Solid Diagnosis in the Breast Using Quantitative Transmission (QT) Ultrasound*. Academic Radiology 2017 Vol 24:1148-1153; doi: 10.1016/j.acra.2017.03.024. Epub 2017 May 23; PubMed ID 28549870. *Academic Radiology* has posted the study in full for free. <u>http://www.healthimaging.com/topics/womens-health/breast-imaging/and-coming-ultrasound-technology-shows-prowess-mammography-adjunct.</u>

Image Review

Below are the negative mammograms on the left and the QT masses on the right

Case 1A - multiple cysts (002L)

Case 1B - multiple cysts (002L)

Case 2 – solid mass (008L)

Case 3 solid mass (052L)

Case 4 – solid mass (059R)

Case 5 – 2 cysts (060L)

Case 6 Cyst (109R)

Case 7 Cyst (089R)

Case 8 Mass (091R)

Case 9 (006R)

Case 10 (055R)

Case 11 Cyst 2 (089R)

Case 12 (091Rb)

Case 13 (109Rb)

Case 14 (111R)

Case 15 (123R)

Case 16 (145R)

Case 17 (155R)

Case 18 (157R)

Case 19 (157L)

Case 20 (162L)

Case 21 (168L)

Case 22 (178L)

Case 23 (188L)

Case 24 (188R)

Case 25 (195L)

Case 26 (197L)

Case 27 (220R)

Case 28 (092R)

Case 29 (106R)

Case 30 (106L